Логика классов - определение. Что такое Логика классов
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Логика классов - определение

ОДИН ИЗ ВИДОВ МНОГОЗНАЧНОЙ ЛОГИКИ
Трехзначная логика; Трёхзначная логика; Логика Клини

Логика классов      

раздел логики (См. Логика), основным предметом рассмотрения в котором служат классы (множества) предметов, задаваемые характеризующими их свойствами, общими для всех входящих в данный класс элементов. В рамках современной формальной (математической) логики Л. к. может пониматься, с одной стороны, как такое усиление (расширение) логики высказываний (См. Логика высказываний), при котором "элементарные высказывания" уже не рассматриваются только как нерасчленяемое далее "целое", а каждое из них имеет субъектно-предикатную форму [т. e. может рассматриваться на содержательном уровне как нераспространённое повествовательное предложение, в котором различаются подлежащие (subjects) и сказуемые (predicates)]. Другая - отличающаяся от только что указанной по форме, но эквивалентная по существу, - трактовка Л. к. состоит в истолковании её как частного случая логики предикатов (См. Логика предикатов), а именно логики одноместных предикатов, точнее логики, оперирующей с объёмами понятий, содержания которых выражаются соответствующими одноместными предикатами. Имеется, наконец, ещё одна, изоморфная (см. Изоморфизм) первым двум, интерпретация Л. к., в соответствии с которой объектами её рассмотрения являются множества (классы) каких-либо предметов - вне зависимости от каких бы то ни было свойств, общих для их элементов, - и операции над множествами (см. Логические операции). Иными словами, Л. к. в этом случае можно отождествить с алгеброй множеств (см. Алгебра логики), в которой рассматриваются произвольные множества и обычные теоретико-множественные операции. Сопоставляя (взаимнооднозначно) множествам (классам) высказывания о принадлежности какого-либо предмета данному множеству, пересечению множеств - конъюнкцию соответствующих высказываний, объединению - дизъюнкцию, а дополнению - отрицание, получают упомянутый выше изоморфизм алгебры высказываний и алгебры множеств (Л. к.). Рассматривая реализацию Л. к. на одноэлементной области, сводят вопрос об истинности (ложности) формул Л. к. к соответствующим вопросам для логики высказываний, подобно которой Л. к. оказывается, т. о., разрешимой. Отсюда нетрудно получить и разрешимость логики одноместных предикатов; а поскольку, как было указано, она по существу совпадает с Л. к., последнюю не рассматривают обычно в виде специальной теории, трактуя её как фрагмент логики предикатов. См. ст. Логика и литературу при ней.

Ю. А. Гастев.

ЛОГИКА КЛАССОВ      
логика объемов понятий, раздел логических теорий, в котором изучаются операции над классами (множествами) и свойства этих операций (законы логики классов).
Троичная логика         
Трои́чная ло́гика (трёхзначная логика или тернарная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика, является простейшим расширением двузначной логики.

Википедия

Троичная логика

Трои́чная ло́гика (трёхзначная логика или тернарная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика, является простейшим расширением двузначной логики.

Что такое Л<font color="red">о</font>гика кл<font color="red">а</font>ссов - определение